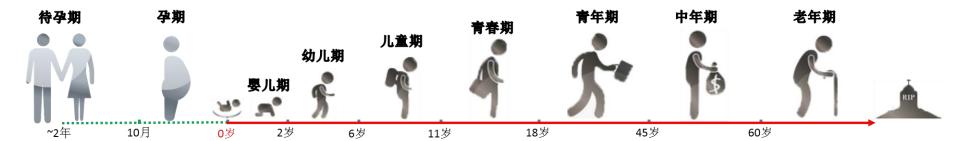
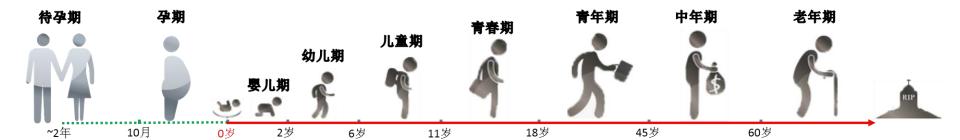


健康医疗数据与诊疗信息与个人隐私、健康状况乃至 家族遗传联系紧密,是健康大数据隐私性与医学伦理 的根源所在

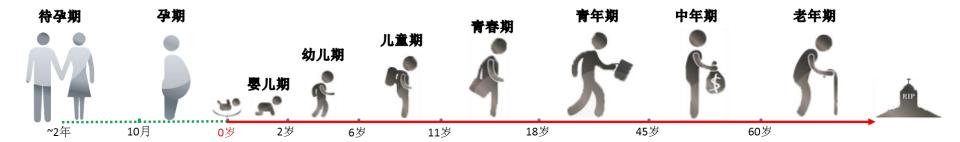


从个人全生命周期来看,只有当散落在各个数据库中的信息按照 时间轴串联起来的时候,才能够较为准确的监控并预测一个人的 健康状况。

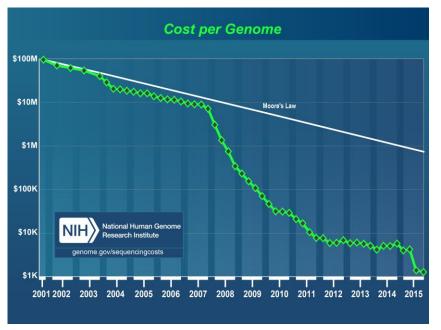
当碎片化的数据进行聚合时,必然涉及到不同数据库之间的数据标准、数据的质量控制,以及在数据流动过程中的安全管理。后台则对应着数据共享与开放过程的商业模式与利益分成机制,这是整个健康大数据的难点所在。

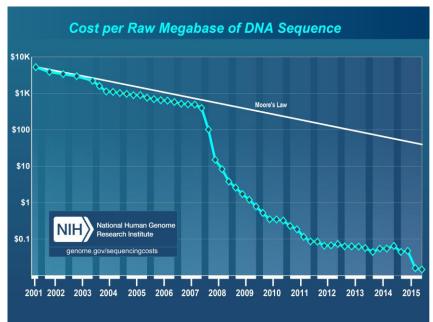


单一的监控数据能够反映一个人的生理指标变化趋势,但无法确认是否健康。相应的标准是从千百万人的生理数据中提炼而来,具有统计性特征,采样的样本数越多,参考价值越大。


健康,除了与家族遗传、个人体质有关外,受周围环境的影响巨大,环境质量监控数据、食品流通及安全数据,以及与生活方式相关的各类应用及由此产生的数据,都属于大数据的广义范畴。

計劃計劃計


基因是精准医疗的核心,是健康大数据最为重要的组成部分。


测序技术	原理	公司及仪器	测序通量	准确率	读长	优缺点	应用状况
第一代	链终止法	ABI: 3730XL	0.2MB	>99%	400-900	高读长、高精度、一次性 达标率高、通量相对较低	成本高、速 度慢、应用 少
第二代	边合成边 测序,可 逆终止法	Illumina: Sloexa Roche: 454(停产) ABI: Solid	400Mb-1.8T	>99%	50-300	高通量、低成本,但存在 模板扩展和序列读长的缺 陷	目前应用最 为广泛的技 术
第三代	单分子合 成测序	PacBio: Heloscope; PacBio: SMRT	0.2-30Gb	<90%	>1000	高通量、高读长、低成本, 但准确度不高	研发阶段, 未真正商业 应用
第四代	纳米孔外 切酶测序	Oxford: MinION \ GridION	5-50Gb	>90%	>1000	高通量、高读长、低成本、 小型化	研发阶段, 未真正商业 应用

来源: 经公开资料整理

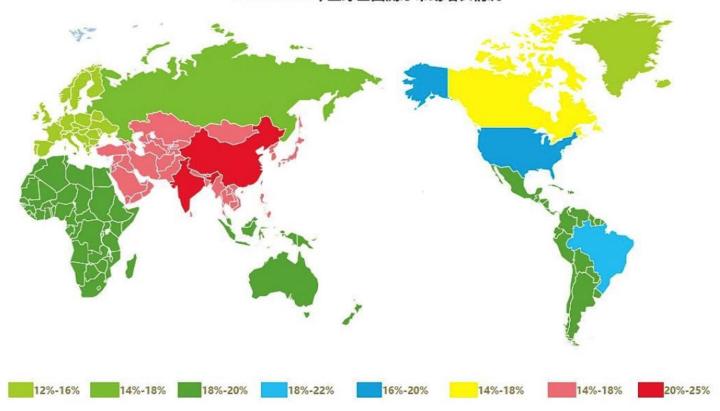
基因测序成本以超"摩尔定律"的速度下降,不仅为基因测序技术的广泛使用提供良好的经济技术,推动着测序产业的迅猛发展,同时也产生了海量的基因数据。

来源: National Human Genome Research Institute

测序技术的不断进步和测序成本的进一步下降,使得测序数据呈现爆发式增长趋势。各国所推出的基因组图谱计划,更是推动了这一增长态势,保守估计2015年生物医学行业内所产生的数据量已经超过了500PB,这其中绝大多数来自于基因数据。

- · 千人基因组计划(英国,美国,中国)
- · 癌症基因组图谱(TCGA,美国)
- 国际癌症基因组协会(ICGC,欧洲,美国,中国)
- 个人基因组计划(美国)
- 临床测序计划(ClinSeq,美国)
- 23andMe (美国)
- 云健康(中国)

来源:公开资料整理



2007-2022全球基因测序行业市场规模

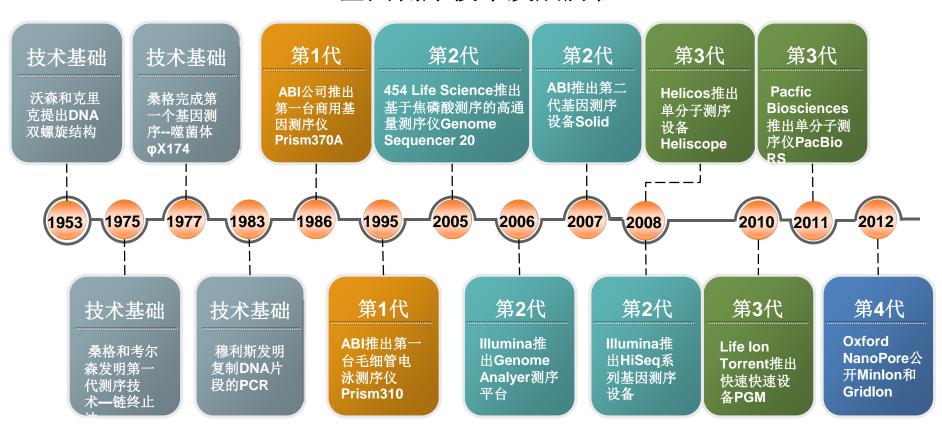
2012-2017年全球基因测序市场增长情况

换一个角度看基因产业

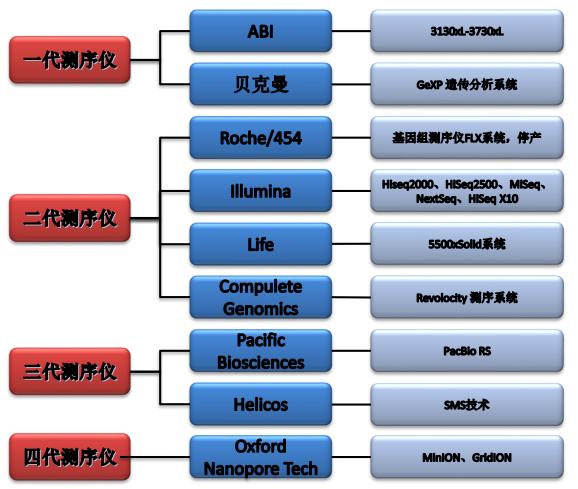
数据生产

- 1. 测序仪提供商
- 2. 测序服务商

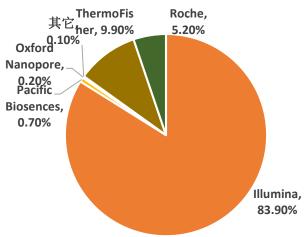
2 数据处理


- 1. 数据处理
- 2. 数据库

3 市场应用


- 1. 肿瘤领域
- 2. 生殖健康
- 3. 遗传病检测
- 4. 药物基因组

基因测序技术发展历程



数据来源:根据公开资料整理

全球目前共有7389台测序设备,其中ILLUMINA测序平台占比83.9%,Thermo Fisher测序平台占比9.9%,Roche测序平台占比5.5%,CR3超过99%,属于绝对垄断行业。

数据来源: http://omicsmaps.com

国产测序仪公司一览

批准名称	批号	公司	研发方式	合作方
二代测序仪	国械注准20153400460	杭州贝瑞和康基因诊断技术有限公司	合作开发	Illumina
二代测序仪	国械注准20143402171	深圳华因康基因科技有限公司	自主研发	
二代测序仪	国械注准20143401961	中山大学达安基因股份有限公司	合作开发	ThermoFisher
二代测序仪	国械注准20153400309	博奥生物集团有限公司	合作开发	ThermoFisher
二代测序仪	国食药监械(准)字2014第2401126	武汉华大基因生物医学工程有限公司	合作研发	ThermoFisher
二代测序仪	国食药监械(准)字2014第2401127	武汉华大基因生物医学工程有限公司	收购	CG
二代测序仪	研发中	中科紫馨科技有限公司	自主开发	
三代测序仪	GeneCare	深圳瀚海基因生物科技有限公司	自主开发	
二代测序仪	研发中	中源协和基因工程股份有限公司	合作开发	北京旷博生物(李同恩)
二代测序仪	研发中	深圳市共进电子股份有限公司	合作开发	上海小海龟(吴东平)

数据来源: 根据公开资料整理

换一个角度看基因产业

1 数据生产

- 1. 测序仪提供商
- 2. 测序服务商

2 数据处理

- 1. 数据处理
- 2. 数据库

3 市场应用

- 1. 肿瘤领域
- 2. 生殖健康
- 3. 遗传病检测
- 4. 药物基因组

地区						J.	则序服务	机构					
	诺禾致源	安诺优达	贝瑞和康	圣谷同创	博奥生物	百迈克生物	康普森	嘉宝仁和	源宜基因	博淼生物	圣庭集团	中美泰和	斯科尔基因
北京	华牛生物	微旋基因	基云惠康	爱普益	迈基诺基因	量化健康	诺赛基因	毅新兴业	. 博恒生物	百麦华康	华生恒业	路思达	鑫诺美迪
	中科紫馨	海克维尔	瑞德百奥	英木和	溯源精微	华奕生物	奥维森	布斯坦	信诺佰世	银河基因	华诺时代	泛生子	
	药明康德	云健康	派森诺生物	1 晶能生物	美吉生物	宝腾生物	凡迪生物	佰真生物] 南方基因	烈冰科技	生工生物	鼎晶圣物	锐羿基因
上海	欧易生物	翰宇生物	泛亚基因	尤妮曼	联合基因	吉玛生物	康成生物	赛安生物	丁吉凯基因	上海敏芯	阿趣生物	博苑生物	丰核信息
上母	生咨生物	英拜生物	凌科生物	泉麦生物	卓立生物	达迈生物	基因科技	基龙生物] 源奇生物	赛优生物	希匹吉生物	百世嘉	派航生物
	伯豪生物	祥音生物	锐羿生物	惠研生物	嘉因生物	允英医疗	虹舜生物	捷易生物	リ 思路迪-埃技	是斯	Illumina中国		TAAG Genetics
深圳	华大基因	千年基因	博大维康	易基因	海普洛斯	裕策生物	蓝图基因	普元科技	早知道科技	英马诺生物	1恒创基因	锐澳康晨	华因康基因
广州	达安基因	托普基因	锐博生物	燃石科技	基迪奥生物] 永诺生物	坤图生物	英格生物] 金域检验	瑞科基因	赛哲生物	洪祥生物	
42-111	贝达药业	谷禾生物	浙江天科	中翰金诺	杭州英睿	壹基金	然纳生物	晶佰生物	〕美格生物	联川生物	奥拓生物	艾迪康医学	迪安诊断
杭州	博圣生物												
武汉	菲沙基因	康圣环球	贝纳基因	生命之美	数桥科技	锦奥生物	大众源生						
苏州	帕诺米克生物	勿金唯智生物	贝斯派生物	万昊生物	赛业生物	Qiagen	苏州生物	医药创新	中心				
	中宜金大(江)	苏宜兴)	亿康基因(江	工苏泰州)	所罗门兄弟 盐城)	8医学(江苏	世和基因	(江苏南京	刘迪康金诺(江	工苏南京)	广而生物(江苏	东南京)	
其它	苏博生物(江	苏宿迁)	锐创生物(江	工苏绍兴)	健海生物(汽	可北石家庄)	盘古基因	(天津)	天津生物芯	片(天津)	国信凯尔(山西	西太原)	
	先导药物(四)	川成都)	湘雅医学检 长沙)	ѝ验所(湖南	博川基因(湖	胡南长沙)							

测序仪设备被国外厂商垄断,且进入门槛较高,国内企业在消费级测序服务方面发展迅猛,目前约有150家测序服务企业。

来源:银河证券《基因测序的发展趋势与商业模式——探讨精准医疗系列报告之(一)》

中国大陆地区Illumina X10 分布							
地区	企业或机构	引入时间	套数				
上海	药明康德	2014年3月	1				
上海	云健康	2014年10月	1				
小台	♪サゴ·☆//G	2014年3月	2				
北京	诺禾致源	2016年4月	2				
北京	安诺优达	2016年4月	1				
北京	泛生子	2016年4月	1				
苏州	金唯智	2016年4月	1				
杭州	贝达药业	-	1				
哈尔滨	黑龙江省临床医学精准检验检测中心	-	1				

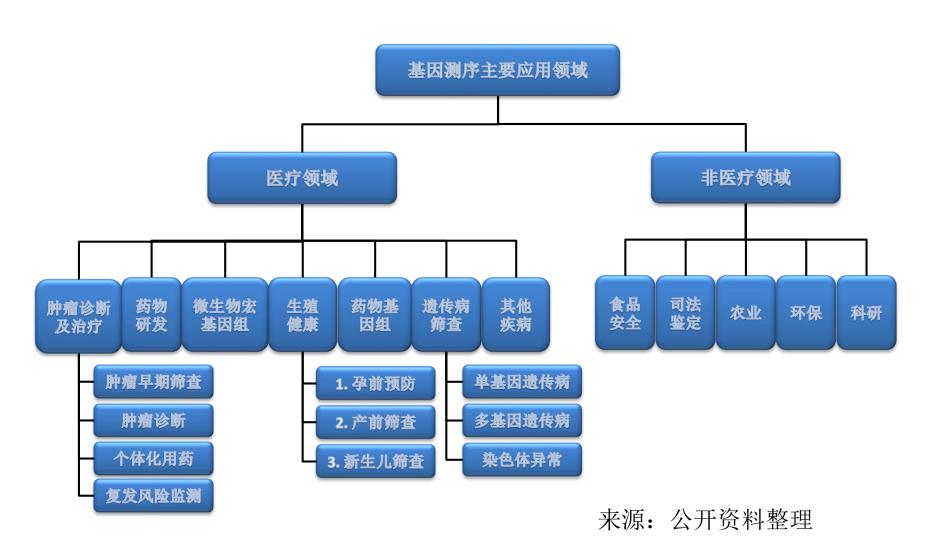
来源:据公开资料整理

2015年底中国大陆已有的3台Hiseq X10接近满负荷运转,而16年后中国大陆的测序能力将达到16.2万人/年,20PB/年的数据产出能力,整个市场的NGS基因组测序处于供大于求的状态,竞争将加剧。

换一个角度看基因产业

) 数据生产

- 1. 测序仪提供商
- 2. 测序服务商

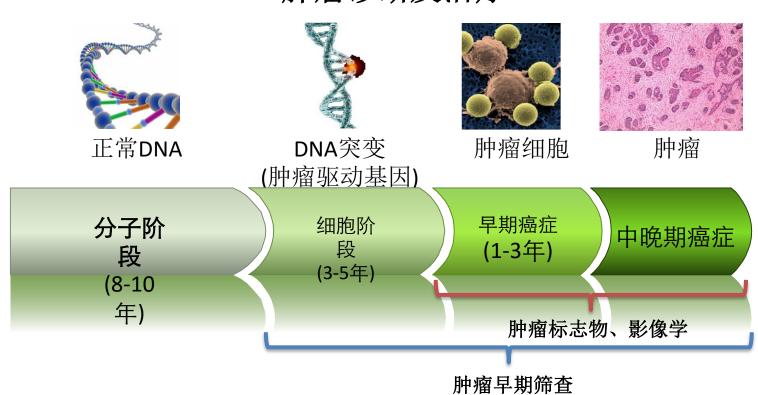

2 数据处理

- 1. 数据处理
- 2. 数据库

3 市场应用

- 1. 肿瘤领域
- 2. 生殖健康
- 3. 遗传病检测
- 4. 药物基因组

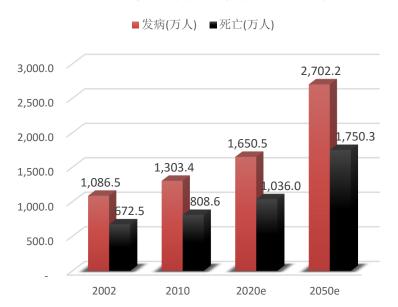
肿瘤诊断及治疗


▶预防——肿瘤基因检测

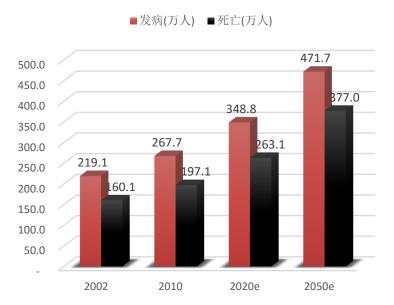
- ▶诊治——个性化用药指导
- ▶ 预后——复发检测和药效评估

- ✓ 肿瘤易感性相关基因
- ✓ 肿瘤发生相关基因
- ✓ 靶向用药相关基因
- ✓ 化疗用药相关基因

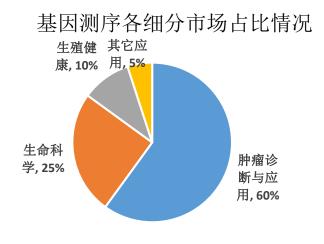
肿瘤诊断及治疗



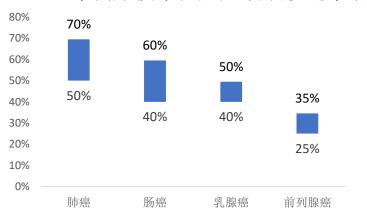
来源:公开资料整理



肿瘤诊断治疗和数据服务是基因测序行业最具投资价值的细分领域。



2002-2050年中国癌症发病和死亡预测



Illumina公司预测基因测序全球市场总容量为200亿美元,肿瘤诊断与应用方向为120亿美元,占60%,是基因测序的最大应用市场。同时,麦肯锡预测基因测序在肺癌、肠癌、乳腺癌和前列腺癌等领域的渗透率超过20%。

来源: Illumina

2018年测序技术在癌症领域渗透率预测

来源:麦肯锡

生殖健康

- ➤一级预防——孕前预防(PGD/PGS)
- ▶二级预防——产前诊断、筛查(NIPT)
- ▶三级预防——新生儿筛查

产品名称	项目	2015 年上半年	2014年	2013年	2012年
	产能(个)	360,500	573,000	403,000	210,000
生育健康类	产量(个)	326,987	515,567	350,904	178,466
服务 (以样本数 为统计口径)	销量(个)	326,985	515,552	350,896	178,460
	产能利用率	90.70%	89.98%	87.07%	84.98%
	产销率	100.00%	100.00%	100.00%	100.00%

来源:华大基因招股说明书

2016年中国胚胎植入前及新生儿基因测序市场规模预测

项目		假定情况及说明				
试 管受 孕人群(万人)	1)2014年末育龄妇女怀孕人数为 1381.7万人;2)不孕不育夫妇占育龄; 妇比例15%;3)假设不孕不育人群中 60%的人接受试管受孕					
假设胚胎植入前基因测序	渗透率(%)	20%	40%	60%		
胚胎植入前基因测序渗透	人群 (万人)	24.87	49.74	74.61		
胚胎植入前基因测序市场	规模 (亿元)	6.22	12.44	18.65		
项目		假定情况及说明				
怀孕人数 (万人)	怀孕人数 (万人) 1381.7			人数1381.7万 .7万人		
假定新生儿基因疾病筛查	渗透率(%)	1%	5%	10%		
新生儿基因疾病筛查渗透	人群 (万人)	13.82	69.08	138.17		
新生儿基因疾病筛查市场	容量(亿元)	2.76	13.82	27.63		

2016年中国产前基因测序市场规模预测

项目		假定情况及说明				
高齢产妇 (万人)	26.50	2014年末35岁以上并首次怀孕人数 为26.50万人;				
假设高龄产妇产前基因(%)	测序渗透率	50%	70%	90%		
高龄产妇产前基因测序 (万人)	渗透人群	13.25	18.55	23.85		
高龄产妇产前基因测序 (亿元)	市场规模	3.18	4.45	5.72		
非高龄产妇 (万人)	1355.03	2014年末35岁以下产妇,及35岁 非首次怀孕产妇人数为1355.03万				
假定非高龄产妇产前基率(%)	5%	10%	20%			
非高龄产妇产前基因测(万人)	序渗透人群	67.75	135.50	271.01		
非高龄产妇产前基因测(亿元)	小字市场规模	16.26	32.52	65.04		
无创产检市场规模((Z元)	19.44	36.97	70.77		
生殖健康基因测序市场	规模 (亿元	28.42	63.23	117.05		

注释: 1) 假定育龄妇女人数稳定, 2016年育龄妇女人数与2014年育龄妇女人数相当;

2) PGS价格为2500/例,NIPT价格为2400元/例,新生儿基因筛查价格为2500元/例。

换一个角度看基因产业

) 数据生产

- 1. 测序仪提供商
- 2. 测序服务商

2 数据处理

- 1. 数据处理
- 2. 数据库

3 市场应用

- 1. 肿瘤领域
- 2. 生殖健康
- 3. 遗传病检测
- 4. 药物基因组

据公开数据显示,全球基因测序数据分析市场规模发展迅速,2012年市场规模不超过2亿美元,预计2018年将达到6亿美元,复合增长率为22.7%。

数据量的增长,使得基因测序的工作重心从前期的人工测序转移到了数据分析上,原始测序数据并不能反映疾病信息,需要经过基因组的比对,数据过滤筛选等多个步骤才能得到基因组上的变异信息,才能为疾病的诊疗和治疗提供参考。

一多基因数据分析和解读,关系到下游基因测序的应用,是制约基因测序行业发展的关键环节。

基因数据的处理,既包括了对于测序仪下机数据处理和解读过程,也包括了这一过程中所涉及各类专业数据库。

NCBI

美国国家生物技术信息中心(NCBI),建 立于1988年

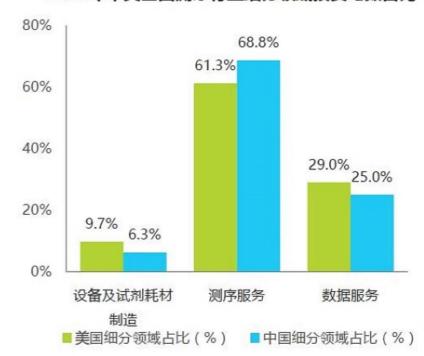
癌症和肿瘤基因组图谱计划

(The Cancer Genome Atlas, TCGA)

TCGA以人类基因组计划的成果为基础,研究癌症中基因组的遗传变化与出生后细胞中后天的基因变化。 TCGA是迄今为止世界上所进行的最大一项基因工程。项目2005年底启动,投入2亿美元,涉及50种以上的包括某些特定亚型在内的肿瘤,收集了数万种人的肿瘤及其对照样本,2007年开始对世界提供数据共享服务,产出的各类组学数据总量达到PB数量级。运用TCGA产出数据到2014年已经在国际高水平研究杂志上发表了超过1000篇论文。

a reference 源从C到B Ficard CollectAlignmentSummal Mrc B到 @ m

- 提供自有数据库和数据服务20余项
- 100员工,年均投入约5000万美元


Ф

商业化

2015年中美国基因测序行业细分领域投资数据对比

19 100000 3 11 80000 64500.0 60000 40000 14564.0 20000 4220.0 6371.4 158.1 79.1 0 设备及试剂耗材制造 数据服务 测序服务 美国披露投资额(万美元) 中国披露投资额(万美元) → 美国投资笔数(笔) → 中国投资笔数(笔)

2015年中美基因测序行业细分领域投资笔数占比

总结

- ▶基因测序行业总体向好,中国市场正以超过20%的增速大步跃进;
- ▶生物信息学(数据加工)正在成为阻碍整个行业发展的瓶颈;
- ▶基于基因数据和临床病例,建立一个统一、科学、标准的数据库迫在眉睫;
- ▶ 肿瘤市场是基因检测的主阵地,但肿瘤机理过于复杂,基因测序和实施临床干预还不能顺利对接,操作层面和政策层面还有很多困难;
- ▶基因行业从业者应当建立属于自己的"护城河";
- ▶基因大数据是健康大数据的一个有机组成部分,不同数据库之间的共享与打通将是整个行业的发展方向。

THANK YOU